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ABSTRACT

We prove a cell entropy inequality for a class of high order discontinuous Galerkin finite

eleInent methods approximating conservation laws, which implies convergence for the one

dimensional scalar convex case.
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1 Introduction

In [3] Cockburn and Shu defined a class of discontinuous Galerkin finite element methods

for conservation laws (tile multi-dimensional case was discussed in [4]):

u, + div f(u) = 0

The entropy solution of (1.1) also satisfies

(1.1)

U(u), + div F(u) <_ 0 (1.2)

in the distribution sense, for any convex function U(u) and consistent entropy flux F(u) sat-

isfying F'(u) = U'(u)f'(u). The scheme is obtained in the following way: first a triangulation

Th is chosen. In one space dimension Th is just a collection of subintervals Ij = (zj_½, zj+½),

which are not necessarily of tile same length. We will use the notation Axj = xj+½ - xj_½,

l
h = maxj Axj and xj = 7(xj__ + xj+½). In two and more space dimensions _, is a collection

of triangles, tetrahedrons or other simple geometric objects. The solution space Vh is defined

as the collection of all piecewise polynomials of degree up to r for a (r + 1)-th order method.

The functions in Vh are allowed to have discontinuities across element interface. The conser-

vation law (1.1) is multiplied by a test function v E Vh, integrated over an element K E Th,

and formally integrated by parts to shift the spatial derivatives from f(u) to v. The result

is:

_^f'ut(x't)v(x)dx + Y_ f_ f(u(x,t)) . n v(x)ds - fh" f(u(x,t)) . grad v(x)dx = 0. (1.3)
eEOK

where OK is tim boundary of the element K and n is the unit outward normal vector. Tiffs

procedure up to now is just the standard discontinuous Galerkin method. Two features from

the finite difference methodology are then used in [3], [4]: one is tim monotone or E flux

(approximate Riemann solver for systems) to define tile trace of the physical flux f(u) at

tile cell interface; the other is a local nonlinear limiter which limits the values of u at the



cell interface by tile differences of tile means of u over elements. With these two ingredients,

it was proven in [3] and [4] that the schemes are formally high order accurate, measured by

local truncation errors in smooth regions including at extrema, are total variation bounded

for one space dimension, and are maxinmm norm bounded for any space dimensions. The

only thing missing is the entropy condition: in [3], we were able to prove entropy consistency

for the square entropy U(u) = *'=T for one dimensional convex f(u) with a h-independent

modification to the scheme, following the idea of Osher [12]. We were also able to prove

entropy consistency for all convex entropies with a h-dependent modification to the scheme.

The h-dependent limiters make the proof of high order schemes easy, but it is not very desir-

able for practical computations, because it usually limits the slope near tile discontinuities

stronger than necessary, and essentially flattens the solution there to piecewise constants for

fine mesh. It also destroys the self-similarity of the scheme.

Entropy condition seems difficult to prove for high order finite difference schemes. Osher

and Tadmor proved [13] that finite difference schemes (which evolve only the mean) which

satisfy cell entropy inequalities for all convex entropies can be at most first order accurate.

Even for one entropy inequality (say for the square entropy), for one space dimension and

for convex f(u), the proof is extremely elusive if one does not modify the scheme. Osher [11]

and Nessyahu and Tadmor [10] were able to get such cell entropy inequalities, for the square

entropy and for the second order MUSCL scheme, with some h-independent modifications;

Yang [14] was able to prove convergence of unmodulated second order MUSCL scheme

using a global analysis rather than relying solely on cell entropy inequalities; Lions and

Souganidis [8] proved convergence of second order MUSCL scheme for steady state Hamilton-

Jacobi equations and conservation laws. There are also many results which prove entropy

consistency and/or convergence using h-dependent limiters or modifications for high order

schemes. For example Coquel and LeFloch [7] for finite difference; Johnson, Szepessy and

Hansbo [9] for streamline diffusion finite element; Cockburn, Coquel and LeFloch [5] and

Cockburn and Gremaud [6] for high order finite volume, streamline diffusion or discontinuous



Galerkin schemeswith h-dependent "shock capturing" terms. These results are usually more

general (multi space dimensions, non-convex fluxes, etc.). However, as we have indicated

before, h-dependent limiters or modifications should be avoided for practical computations if

possible. More recently, Bouchut and Perthame [2] obtained a second order one dimensional

scheme which is consistent with all entropy conditions and does not use h-dependent limiter.

A key ingredient of [2] is to evolve both the mean and the slope and use the whole function

(not just the mean) to obtain cell entropy inequalities. Discontinuous Galerkin methods also

fall into this category (evolving the whole polynomial in a cell rather than just the mean),

and we use this fact strongly in this paper.

u 2

In Section 2 we prove a cell entropy inequality using the square entropy U(u) = T

for the unmodulated semi-discrete discontinuous Gaterkin method of [3], [4]. The proof is

remarkably simple and does not even use any nonlinear limiters. It works thus for any spatial

order of accuracy. As far as we know, all the previous cell entropy inequalities without h-

dependent limiters must restrict the slope of a function by -_rninrnod(A+uj, A_uj) (which

+ - u7 _ must be of the same sign as that ofmeans that the difference at the interface, u } a+_'

uj+l - uj, i.e., no "sawtooth" is allowed in the reconstruction), hence cannot be higher than

second order accurate. The result in this paper illustrates the potential of discontinuous

Galerkin methods, or equivalent Hermite type finite difference/finite volume type methods,

which evolve the whole polynomial in the cell rather than just the mean. Time discretization

is discussed in Section 3.

2 Cell Entropy Inequality for the Square Entropy

The discontinuous Galerkin scheme in one space dimension, defined in [3], in its semi-discrete

form without slope limiting, is the following: Find u(., t) C Vh, such that, for all v E Vh and

all subinterval Ij:

J_/_
u,(x t)v(x)dx + hj+}(t)v(x-f+}) - h____(t)v(x + ,)- f

, a 2 a--_ J

3

f(u(x,t))v,(x)dx=O (2.1)



/ \

Here,
hj+½(t) =h _u(x-f+½,t),u(x++½,t))isa Lipschitz continuous monotone flux (i.e. h is

non-decreasing in the first argument and non-increasing in the second argument), or more

generMly an E-flux as defined by Osher [11]:

(h(u-, u +) - f(u)) (u + - u-) < 0 (2.2)

for all u between u- and u +. Some examples of the commonly used monotone fluxes call be

found ill, e.g., [3].

If we take v(x) = u(z,t) in (2.1), we get

We define

f(u(x,t))u_(x,t)dx = 0 (2.3)

and rewrite (2.3) as

where

g(u) = J" f(u)du (2.4)

f_ / \lu2(x't)) dx + Pj+½(t)-[zj ½(t)+ Aj(t):O (2.5)
2 t

^ w

Fj+½(t) = hj+½(t)u(x_+½,t) - g(u(xj+½,t))

is consistent with the entropy flux for the square entropy:

(2.6)

and

F(u) = f_' f'(u)udu _= f(u)u- f(u)du = f(u)u- g(u), (2.7)

Aj(t) -hj_½(t)(u(x+,,t) - _(x- ,
k 3-_ _-_

4

,_,))+ g(u(x__½,t))- 9(_(_;__,t,))



= _(,,_,_(,>_:(:>) ,>_.(,:_._.,))>_0 (,.,>

where we have used the mean value theorem and the definition (2.4) of g(u) in the second

equality, _ is between u(x- , t) and u(x+½,t), and the last inequality is due to the property

of E-flux (2.2).

We have thus proven the cell entropy inequality

" "[u_(_-'t)) _x+ _j+_(t)- [_j__(t)< 0 (2.9)\ 2 ,

for the square entropy U(u) _,2.= 5- Notice that we do not need any nonlinear limiting at

this stage. However, nonlinear limiting as introduced in [3] and [4] will not destroy this cell

entropy inequality (see next section). The cell entropy inequality (2.9) trivially implies L 2

stability of the scheme (again without even using the nonlinear limiting):

d I_ _ (u2(x't))dx< 0 (2.10)dt o_ 2 -

but it is much stronger. For example, if f(u) is convex and we use the nonlinear limiting [3]

to obtain a total variation boundedness for the solution, we will have convergence towards

the unique entropy solution.

The same entropy inequality can be obtained for multi-space dimensions with arbitrary

triangulations:

where F¢,K is consistent with F.nh- for the entropy flux F in (1.2) and the outward normal

nK, and F¢,_,- = -F_,_<, for the two neighboring elements K r'l K' = {e} (conservation). We

omit the derivation detail since it parallels that for the one dimensional case.

We have the following two remarks:

(1). If we try to do the same estimate for a general convex entropy U(u), we can obtain

exactly the same cell entropy inequality module an interpolation error term:



f

J1, (u(x, t)t + f(u(x, t))_)(U'(u(x, t)) - IIU'(u(x, t)))dx (2.12

where l-Iv is a projection into the space Vh which interpolates at the two end points of 13.

This motivates the following h-dependent modification to the scheme, which is similar to the

"shock capturing term" added to tile streamline diffusion method in Johnson, Szepessy and

Hansbo [9] and in Cockburn and (_remaud [6]:

fljUt(x,t)v(x)dx hj+½(t)v(x_+½) hj_½(t)v(x+_½) - fb f(u(x,t))v_(x)dx
+

--fb[ut(z,t) + u (z,t) v (x)dx = 0 (2.1:3)+ Ch
lu (x,t)l

where C is a suitable positive constant. This, together with a L_ bound which can be

obtained by using nonlinear limiters [3], will give us a cell entropy inequality for arbitrary

convex entropy at least for the r = 1 (second order) case, hence convergence for any noncon-

vex flux f(u) in this case. For general r, more h-dependent modification is needed. Notice

that by adding this modification, the formal order of accuracy of the scheme is not changed:

[ut(x,t) + f(u(x,t)),:[ is just the local truncation error. A similar argument as in [9] shows

that the modification does not destroy convergence towards weak solutions (conservation).

(2). The so-called discontinuous Galerkin method can also be recasted as a finite differ-

ence scheme (Hermite type: where one evolves both the mean and the slope, maybe more).

For example, the second order case is just the following scheme for the mean fij(t) and the

slope sj(t) where u(x,t) = ttj(t) + sj(t)(x - xj) in cell Ij (see [3]):

where

Ax i

6 12

Axj
],+½(t)= h + aj+,(t)

f (ftj(t) + sj(t)(x - xj))dx (2.14)

Axj+l )2 sj+,(t) (2.15)



We have thus in effect proved cell entropy inequalities for such high order Hermite type

finite differenceschemeswithout usingthe help of any nonlinear limiting. Of course,to get

convergenceonemust usethe nonlinear limiting to obtain Loo and/or total variation bounds.

3 Time Discretization

We discretize (2.1) in time by the following class of methods:

where

n+O. [,_- 1.n+O. [,.+ 'lu"+'(x) u"(*)v(z)dx + hj+_t,,+_)-,,. ,_t._. ,J
At 3-_ _-_

J,s =o (3.1)

un+°(x) = (1 - O)u"(x)-4- Ou'_+'(x)

h,,+o (.,,+or_- u,,+O(x+ )j+½ = h ._ t*.-,), ) (3.2)

For 0 = 0 this is the Euler forward discretization; for 0 = 1 this is Euler backward; and

1 this is Crank-Nicolson.forO=

If we take v(x) = u '_+° (x), we obtain just as before

L un+I(x) -- lIn(x)tLn+O(x)dx -Jr- Ign+O -- pn+O <At "J+} i-½ - 0 (3.3)

where

= h . _ u t x . , j - g -_+

with g(u) defined by (2.4). We ca,, rewrite (3.3)as

(3.4)

f, (u"+'(*)) _- (u"(x))_dx +/.,,+o /.,,+o 1 L, 2At *J+½- "J-½ + (0 - -_)
'_"'Z') dx(_ < o(_.+1(_)

At
(3.5)



Thus a sufficient condition to get the cell entropy inequality

fb (u_+l(x)) 2- (u"(x))2dx + g,,,+o f_,,+e2z_ "J+½ - "J-½ -< 0 (3.6)

is just 0 >_ ½, i.e. implicit schemes from Crank-Nicolson to Backward Euler.

Up to now we have not considered the nonlinear minmod type limiters in [3] and [4].

These limiters will render the sclmme total variation stable (ill one space dimension) or Lo_

stable (in multi space dimensions). We have to make sure that these limiters do not destroy

the cell entropy inequality (3.6). This turns out to be a simple issue: suppose _2''+l(x) is tile

solution obtained from the scheme (3.1) without limiter, then projected to get the solution

at time level n + 1 by some,, minmod type limiter u '_+_(x) = pb_+l (z) (this is tile procedure

adopted in [3] and [4]). The above derivation for the unlimited scheme will give (3.6) for

fin+l.

- (3.7)2At dx + . j+½ - , j_½ <_ 0

hence a sufficient condition to get the cell entropy inequality (3.6) for the limited (projected)

solution u TM is to require the projection P to satisfy

(Pw(x))2dx < fb (w(x))2dx (3.8)

for all polynomial w(x) of degree up to r (recall that r+ 1 is the order of the scheme), i.e.

P does not increase the L2 norm of any r-th order polynomial in cell Ij. Notice that this

is the idea used in [2]. An easy way to ensure condition (3.8) is to write w(x) and Pw(x)

as expansions of (scaled) Legendre polynomials pt(x) as in [3]: w(x) = _t_=oatpt(x) and

Pw(x) = Z_=obtpt(x). A simple sufficient condition to ensure (3.8)is now just Ib,I < la, I

for all l, which is easily checked to be correct for the pl case (r = 1) ill [3] and also for the

general P_ case with similar minmod limiters on at (see also [1] for such limiters).

It is also possible to get cell entropy inequalities for certain explicit time discretizations.

For example, with leap-frog time discretization:
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f u"+a(x)-u_-l(X)v(x)dx+h , t v x 1 h_ ,(t)%(x+ ,)-f,2_Xt _+_()'' ( _-+_)- _-_ _-_

we can obtain, by taking v(x) = u"(x):

f(u"(x))v_(x)dx =0

(3.9)

jflj un+l(X)Un(X)-Un(X)un-l(X)dx ^n fi,n_-27'i + rj+_ - ___<_o. (3.10)

4 Concluding Remarks

We have shown that the discontinuous Galerkin method, or equivalent Hermite type finite

difference method, which evolves the whole polynomial inside a cell, satisfies a cell entropy

inequality for the square entropy in multi space dimensions. Limiters to enforce total varia-

tion or maxinmm norm stability can be designed not to destroy this cell entropy inequality.

Time discretization is also discussed.
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